411 research outputs found

    Pyrolysis of Dried Wastewater Biosolids Can Be Energy Positive

    Get PDF
    Pyrolysis is a thermal process that converts biosolids into biochar (a soil amendment), py-oil and py-gas, which can be energy sources. The objectives of this research were to determine the product yield of dried biosolids during pyrolysis and the energy requirements of pyrolysis. Bench-scale experiments revealed that temperature increases up to 500 °C substantially decreased the fraction of biochar and increased the fraction of py-oil. Py-gas yield increased above 500 °C. The energy required for pyrolysis was approximately 5-fold less than the energy required to dry biosolids (depending on biosolids moisture content), indicating that, if a utility already uses energy to dry biosolids, then pyrolysis does not require a substantial amount of energy. However, if a utility produces wet biosolids, then implementing pyrolysis may be costly because of the energy required to dry the biosolids. The energy content of py-gas and py-oil was always greater than the energy required for pyrolysis

    Hyperprofile-based Computation Offloading for Mobile Edge Networks

    Full text link
    In recent studies, researchers have developed various computation offloading frameworks for bringing cloud services closer to the user via edge networks. Specifically, an edge device needs to offload computationally intensive tasks because of energy and processing constraints. These constraints present the challenge of identifying which edge nodes should receive tasks to reduce overall resource consumption. We propose a unique solution to this problem which incorporates elements from Knowledge-Defined Networking (KDN) to make intelligent predictions about offloading costs based on historical data. Each server instance can be represented in a multidimensional feature space where each dimension corresponds to a predicted metric. We compute features for a "hyperprofile" and position nodes based on the predicted costs of offloading a particular task. We then perform a k-Nearest Neighbor (kNN) query within the hyperprofile to select nodes for offloading computation. This paper formalizes our hyperprofile-based solution and explores the viability of using machine learning (ML) techniques to predict metrics useful for computation offloading. We also investigate the effects of using different distance metrics for the queries. Our results show various network metrics can be modeled accurately with regression, and there are circumstances where kNN queries using Euclidean distance as opposed to rectilinear distance is more favorable.Comment: 5 pages, NSF REU Site publicatio

    What absent switch costs and mixing costs during bilingual language comprehension can tell us about language control.

    Get PDF
    Epub 2019 Mar 28.In the current study, we set out to investigate language control, which is the process that minimizes cross-language interference, during bilingual language comprehension. According to current theories of bilingual language comprehension, language-switch costs, which are a marker for reactive language control, should be observed. However, a closer look at the literature shows that this is not always the case. Furthermore, little to no evidence for language-mixing costs, which are a marker for proactive language control, has been observed in the bilingual language comprehension literature. This is in line with current theories of bilingual language comprehension, as they do not explicitly account for proactive language control. In the current study, we further investigated these two markers of language control and found no evidence for comprehension-based language-switch costs in six experiments, even though other types of switch costs were observed with the exact same setup (i.e., task-switch costs, stimulus modality-switch costs, and production-based language-switch costs). Furthermore, only one out of three experiments showed comprehension-based language-mixing costs, providing the first tentative evidence for proactive language control during bilingual language comprehension. The implications of the absence and occurrence of these costs are discussed in terms of processing speed and parallel language activation. (PsycINFO Database Record (c) 2019 APA, all rights reserved)This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 706128. This research was also supported by grants ANR-11-LABX-0036 (BLRI), ANR-16-CONV-0002 (ILCB), and ANR-11-IDEX-0001-02 from the French National Research Council (ANR)

    Robustness of high-fidelity Rydberg gates with single-site addressability

    Get PDF
    Controlled phase (CPHASE) gates can in principle be realized with trapped neutral atoms by making use of the Rydberg blockade. Achieving the ultra-high fidelities required for quantum computation with such Rydberg gates is however compromised by experimental inaccuracies in pulse amplitudes and timings, as well as by stray fields that cause fluctuations of the Rydberg levels. We report here a comparative study of analytic and numerical pulse sequences for the Rydberg CPHASE gate that specifically examines the robustness of the gate fidelity with respect to such experimental perturbations. Analytical pulse sequences of both simultaneous and stimulated Raman adiabatic passage (STIRAP) are found to be at best moderately robust under these perturbations. In contrast, optimal control theory is seen to allow generation of numerical pulses that are inherently robust within a predefined tolerance window. The resulting numerical pulse shapes display simple modulation patterns and their spectra contain only one additional frequency beyond the basic resonant Rydberg gate frequencies. Pulses of such low complexity should be experimentally feasible, allowing gate fidelities of order 99.90 - 99.99% to be achievable under realistic experimental conditions.Comment: 12 pages, 14 figure

    An In Vitro Comparative Study of Intracanal Fluid Motion and Wall Shear Stress Induced by Ultrasonic and Polymer Rotary Finishing Files in a Simulated Root Canal Model

    Get PDF
    Objective. This in vitro study compared the flow pattern and shear stress of an irrigant induced by ultrasonic and polymer rotary finishing file activation in an acrylic root canal model. Flow visualization analysis was performed using an acrylic canal filled with a mixture of distilled water and rheoscopic fluid. The ultrasonic and polymer rotary finishing file were separately tested in the canal and activated in a static position and in a cyclical axial motion (up and down). Particle movement in the fluid was captured using a high-speed digital camera and DaVis 7.1 software. The fluid shear stress analysis was performed using hot film anemometry. A hot-wire was placed in an acrylic root canal and the canal was filled with distilled water. The ultrasonic and polymer rotary finishing files were separately tested in a static position and in a cyclical axial motion. Positive needle irrigation was also tested separately for fluid shear stress. The induced wall shear stress was measured using LabVIEW 8.0 software

    Meeting the burden of self-management : qualitative study investigating the empowering behaviors of patients and informal caregivers

    Get PDF
    Background: Patient empowerment is an important concept and a movement toward person-centered care of patients with chronic conditions. Nevertheless, to date, most research on empowered patients or informal caregivers has been conducted from a narrow clinical perspective. Such research has mainly focused on how health care professionals can empower patients to increase self-care or compliance with treatment. Research on empowered patient and informal caregiver needs and self-empowering activities is scarce. Objective: We aimed to explore empowering behaviors from a patient and informal caregiver perspective in the context of self-management and to understand how health care can support such behaviors better. Methods: We used an exploratory, qualitative study design. A total of 15 semistructured interviews and 6 focus group interviews were conducted with 48 patients and informal caregivers. We analyzed the interviews using thematic analysis and used a directed content analysis to analyze the focus group interviews. Results: A total of 14 patterns of empowering behaviors were identified that were characterized by several exploratory and influencing activities performed by the participants. The participants expressed a desire to be more active in their care than what is expected and supported by health care professionals. The participants also desired better support for activities imposed on them by health care professionals. Conclusions: To enable a transformation of the health care system to better support self-empowering behaviors, there is a need to develop self-management approaches from a patient and informal caregiver perspective.Vinnova, the Swedish Governmental Agency for Innovation Systems (grant 2017-01221)Forte, the Swedish Research Council for Health, Working Life and Welfare (grant 2016-07324 and grant 2018-01472)Publishe

    Cowboy Hats May Have Saved Huntsman Professors From Arrest in Russia

    Get PDF
    “Chris tells me you are coming to Russia with me,” Dwight Israelson said to me one day last March. Professors Chris Fawson and Dwight Israelsen have worked for several years with officials at North Ossetia State University to establish an inter-university agreement to exchange faculty and students. Chris was unable to go this year, so he drafted me to be his replacement. I did not think I had committed to go, but it appeared I had been drafted so I agreed to go.https://digitalcommons.usu.edu/huntsman_news/1035/thumbnail.jp

    Cardiomyocyte Protection by Hibernating Brown Bear Serum: Toward the Identification of New Protective Molecules Against Myocardial Infarction

    Get PDF
    Ischemic heart disease remains one of the leading causes of death worldwide. Despite intensive research on the treatment of acute myocardial infarction, no effective therapy has shown clinical success. Therefore, novel therapeutic strategies are required to protect the heart from reperfusion injury. Interestingly, despite physical inactivity during hibernation, brown bears (Ursus arctos) cope with cardiovascular physiological conditions that would be detrimental to humans. We hypothesized that bear serum might contain circulating factors that could provide protection against cell injury. In this study, we sought to determine whether addition of bear serum might improve cardiomyocyte survival following hypoxia-reoxygenation. Isolated mouse cardiomyocytes underwent 45 min of hypoxia followed by reoxygenation. At the onset of reoxygenation, cells received fetal bovine serum (FBS; positive control), summer (SBS) or winter bear serum (WBS), or adult serums of other species, as indicated. After 2 h of reoxygenation, propidium iodide staining was used to evaluate cell viability by flow cytometry. Whereas, 0.5% SBS tended to decrease reperfusion injury, 0.5% WBS significantly reduced cell death, averaging 74.04 +/- 7.06% vs. 79.20 +/- 6.53% in the FBS group. This cardioprotective effect was lost at 0.1%, became toxic above 5%, and was specific to the bear. Our results showed that bear serum exerts a therapeutic effect with an efficacy threshold, an optimal dose, and a toxic effect on cardiomyocyte viability after hypoxia-reoxygenation. Therefore, the bear serum may be a potential source for identifying new therapeutic molecules to fight against myocardial reperfusion injury and cell death in general
    corecore